Use HMM and KNN for classifying corneal data
نویسندگان
چکیده
These days to gain classification system with high accuracy that can classify complicated pattern are so useful in medicine and industry. In this article a process for getting the best classifier for Lasik data is suggested. However at first it's been tried to find the best line and curve by this classifier in order to gain classifier fitting, and in the end by using the Markov method a classifier for topographies is gained. What are mentioned in this article are supposed to gain a strong classifier so that under Marko theory can choose eyes appropriate for corneal graft.
منابع مشابه
مقایسه عملکرد دو رهیافت شبیهسازی زمانی- مکانی بارش روزانه در گستره ایران
در این مطالعه عملکرد دو رهیافت پارامتری مارکف پنهان (HMM) و ناپارامتری k- نزدیکترین همسایه (KNN) در شبیهسازی سری زمانی دادههای روزانه بارندگی زمستانه در 130 ایستگاه بارانسنجی ایران با طول دوره آماری 21 سال مورد ارزیابی قرار گرفته است. شش ایستگاه بندرانزلی، ساری، قراخیل قائمشهر، گرگان، شیراز و زاهدان نیز به ترتیب به عنوان ایستگاههای معرف اقالیم بسیار مرطوب، مرطوب، نیمهمرطوب، مدیترانها...
متن کاملHMM Speech Recognition with Neural Net Discrimination
Two approaches were explored which integrate neural net classifiers with Hidden Markov Model (HMM) speech recognizers. Both attempt to improve speech pattern discrimination while retaining the temporal processing advantages of HMMs. One approach used neural nets to provide second-stage discrimination following an HMM recognizer. On a small vocabulary task, Radial Basis Function (RBF) and back-p...
متن کاملDetection of some Tree Species from Terrestrial Laser Scanner Point Cloud Data Using Support-vector Machine and Nearest Neighborhood Algorithms
acquisition field reference data using conventional methods due to limited and time-consuming data from a single tree in recent years, to generate reference data for forest studies using terrestrial laser scanner data, aerial laser scanner data, radar and Optics has become commonplace, and complete, accurate 3D data from a single tree or reference trees can be recorded. The detection and identi...
متن کاملClassification of Microarrays with kNN: Comparison of Dimensionality Reduction Methods
Dimensionality reduction can often improve the performance of the k-nearest neighbor classifier (kNN) for high-dimensional data sets, such as microarrays. The effect of the choice of dimensionality reduction method on the predictive performance of kNN for classifying microarray data is an open issue, and four common dimensionality reduction methods, Principal Component Analysis (PCA), Random Pr...
متن کاملA Novel Scheme for Improving Accuracy of KNN Classification Algorithm Based on the New Weighting Technique and Stepwise Feature Selection
K nearest neighbor algorithm is one of the most frequently used techniques in data mining for its integrity and performance. Though the KNN algorithm is highly effective in many cases, it has some essential deficiencies, which affects the classification accuracy of the algorithm. First, the effectiveness of the algorithm is affected by redundant and irrelevant features. Furthermore, this algori...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1401.7486 شماره
صفحات -
تاریخ انتشار 2014